\qquad
Practice Exam 2
Follow the instructions for each question and show enough of your work so that I can follow your thought process. If I can't read your work, answer or there is no justification to a solution, you will receive little or no credit!

1. Let P and Q be statements. Prove that the following statement is always true:

$$
[P \wedge(P \Rightarrow Q)] \Rightarrow Q
$$

2. Let P and Q be statements. Prove that $(P \Longrightarrow Q) \Longleftrightarrow(\neg P \vee Q)$.
3. Prove that $\sqrt{10}$ is irrational.
4. Prove there exists irrational numbers x and y such that x^{y} is rational.
5. Prove that $(1+x)^{n} \geq 1+n x$ for every $n \in \mathbb{N}^{+}$and every $x \in(-1, \infty)$.
6. Let f and g be infinitely differentiable functions on \mathbb{R}. Prove that for any $n \in \mathbb{N}$ the following holds:

$$
(f g)^{(n)}(x)=\sum_{k=0}^{n}\binom{n}{k} f^{(n-k)}(x) g^{(k)}(x) .
$$

7. Let $n \in \mathbb{N}$. Prove that

$$
\sum_{k=0}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

8. Assume that there is a polynomial, $p(n)$, of degree 3 such that

$$
p(n)=\sum_{k=0}^{n} k^{2} .
$$

Find the formula for $p(n)$ and prove that the formula is correct.
9. Prove the product of n rational numbers is again a rational number. Is the product of two irrational numbers always irrational? Prove or disprove you claim.

